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Abstract

Two different classification tasks were performed on satellite images consisting of
midwest-flooding, socal-fire, and hurricane-matthew disasters. The first task focused on
distinguishing fire and flooding disasters while the second task classified hurricane images based
on disaster severity. Both a logistic regression model and convolution neural network (CNN)
were developed to complete each task. Explored image analysis techniques consisted of RGB ,
sobel edge detection, gabor filter, and local binary pattern methods. The CNN resulted in the best
performance for both classification tasks based on accuracy and f1 metrics. An accuracy of 90%
was obtained from the distinction of test flooding and fire images while an f1 score of 0.54 was
achieved for the classification of hurricane severity.

Introduction

Digital image processing is a subdiscipline of computer science and engineering that is
constantly evolving in both terms of computational speed and accuracy. The application of both
supervised and unsupervised learning techniques has specially become resourceful in regards to
feature extraction, pattern recognition, object detection and classification methods, all of which
are especially relevant in image analysis.” Such analysis can be useful in regard to natural
disasters, where current methods have focused on the implementation of machine learning
techniques to assess damage, predict occurrences, and classify disasters.'® This work focuses on
integrating common applications of machine learning to address natural disasters, and it serves as
an exploration of performance when implementing convolutional neural networks and logistic
regression models to perform such tasks.

Several methods of analysis have proven useful in the examining of images. In a true
color image, there are three distinct values corresponding to each pixel. These values represent
the red, blue, and green components of the pixel. Each value contributes to their respective color
channels, and combining the channels results in an image with varying complexions. Colors have
a profound influence on an image, thus the RGB values can be leveraged to extract prominent
image descriptors and objects from a scene.” In addition to color analysis, gabor filters, sobel
edge detection, and local binary patterns are effective methods in texture and edge analysis.
While these methods reveal similar information, they are unique in their mechanisms and
strengths. Gabor filters are linear filters that pick up on the frequency content in a given direction
for a localized region. The application of gabor filters are especially helpful for spatial location
and frequency analysis within images.® Sobel edge filtering measures the 2-D spatial gradient
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measurement on the image.® Furthermore, local binary patterns work by thresholding the
environment of a pixel, resulting in a binary value. They are especially robust in gray scale
changes.’

All of the aforementioned methods of analysis were considered in the classification of
satellite images consisting of socal fire, midwest-flooding and hurricane disasters. Essentially,
two different classification tasks were performed. The first task focused on distinguishing
flooding and fire images through the incorporation of RGB and sobel edge features. The second
task focused on classifying the severity of disasters based on rgb, sobel edge, gabor filter, and
local binary pattern features. Both a logistic regression model and convolutional neural network
were developed for each task, with the latter resulting in the best performance based on accuracy
and f1 values.

Data Analysis and Preparation

Data Sampling

Image Data was obtained from the xView2 Challenge data set. This data set consists of
satellite images taken of environments after one of the following natural disasters: a hurricane,
fire, or flood. More specifically, the hurricane images were of Hurricane Matthew, fire images
were obtained from the SoCal region, and flooding images were taken from midwestern floods.
Each sample in the data corresponds to a unique satellite picture taken from one of three different
disasters. Each image has an associated label corresponding to damage severity. Damage labels
fall within a scale of zero to three, where a label of zero signifies the least amount of damage was
sustained and three signifies the most damage.

Exploratory Data Analysis

The total number of labeled images in the dataset was 26535. The number of images
attributed to hurricanes, fires, and floods were 11151, 8380, and 7004, respectively. To address
outliers, particularly images with significantly larger dimensions, a log transformation was
applied to the dimensions, normalizing the right-skewed distribution. Missing values were
identified and addressed through imputation depending on the extent of missingness and its
potential impact on analysis. We apply feature extraction techniques like RGB channel analysis,
texture patterns (e.g., LBP), and edge detection (e.g., Sobel filters) to derive structured insights
from unstructured satellite image data.

Each image is represented by a tensor of discrete quantitative dimensions (pixel height,
pixel width, number of rgb channels) as this is a common way to represent images for channel
processing and analysis.>> Damage labels are categorically quantitative and increase from 0 to 3,
ranging from no damage to complete environmental destruction. Image dimensions were
analyzed through kernel density estimation. The dimensions were then log scaled for outliers, as
there is a right-skewed distribution of the untransformed images; some of the images were of
significantly larger dimensions i.e. image area > 100000. These distributions are shown in
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Figure 1. The peaks for flood image dimensions are right-shifted to those of hurricanes, and
left-shifted when compared to those of fires.
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Figure 1 Image Width, Image Area, and Image Height (Log Transformed) distribution
for each disaster type.

The distributions for the damage labels can be seen in Figure 2. There is a notable
difference in the number of labels corresponding to damage level 0 vs damage level 1-3 for the
fire and flood images. Additionally, there are a large number of labels that correspond to a
severity level of 1 for the hurricane images.

Damage Label Distribution

type
BN hurricane
mm fire
mmm flood

7000 A

= I - h_
1 2 3

Label

Figure 2 The distribution of damage labels across disaster types

A question of focus was whether or not RGB analysis would allow for the distinction
between disaster types, especially between midwest-flooding and socal-fires. In order to explore
this question, the given images were separated by disaster type. The average individual RGB
scores were then calculated for each row of pixels in a given image. This resulted in a data frame
for each disaster with the average red, blue, and green scores for each distinct image in the given
data set. As shown in Figure 3, color distributions for the socal-fire disaster were concentrated at
slightly higher values across all RGB components when compared to the midwest-flooding
disaster. Considering this pattern, it was believed RGB component scores could be a candidate
for distinguishing flooding and fire disasters. In addition to RGB analysis, the distributions of



sobel edge scores were also examined. The average sobel edge score was determined for each
image. The distributions for the resulting values are shown in Figure 4.
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Figure 3 Distribution of average red, blue, and green color values for the Socal fire and
midwest-flooding disasters.
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Figure 4 Distribution of sobel edge detection values for flooding and fire satellite
images.

Various untransformed image distribution metrics were plotted for the hurricane images
to see if there was a fundamental difference between damage levels based on these metrics
alone. In every instance, there is a left-shift of the mean peak density value for a lower damage
level image, except for the local binary pattern where the damage level 3 images are clearly
right-skewed as opposed to the damage level 1 images. These distributions can be seen in Figure



5. Local Binary Patterns provide separable distributions for severity levels 1 and 3.
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Figure 5 Mean LBP of hurricane images classified as level 1 and level 3 severity
Methodology
. .
Feature Engineering

Initially, a multitude of features were considered for training a Logistic Regression model
focused on the classification of damage severity. Images were first split into each of the three
separate rgb values, and the mean channel value was calculated across every pixel for each of the
images. For edge and texture detection, there were three filtering methods performed. Firstly,
Sobel edges were calculated across all pixels for each of the images. Then each image was fitted
with a gabor kernel consisting of a theta orientation of 0 degrees, Gaussian envelope standard
deviation of 1, and a frequency of 0.1. Lastly, a local binary pattern was calculated for each of
the images, with a neighborhood radius of 3. Due to the right-skewed nature of mean local
binary pattern values observed during initial EDA,, the log transformed value of each mean
local binary pattern was calculated before model training for the hurricane damage labels.

Features of focus for the logistic regression model aimed to predict disaster type were
RGB components and sobel edge features. These features were selected based on the varying
distributions for flooding and fire images.



Feature engineering outside of EDA analysis was unnecessary as the same data frames were
utilized for the training of the logistic regression model. This data frame consisted of three
distinct columns corresponding to the average RGB component and sobel edge scores.

Preparation of input data prior to CNN training consisted of resizing and normalizing the
images. Normalizing was performed based on the RGB scale, and it resulted in pixel values
ranging from zero to one. All images were resized into a 38x38 frame.

Model Selection and Implementation

Initial approaches for classifying flood and fire images consisted of logistic regression.
This model was believed to be an appropriate method considering the task at hand was not a
regression analysis, but instead a classification problem. In order to identify the optimal
parameters of the model, 5-fold cross validation was implemented. Different hyperparameters
were assessed consisting of varying penalty and solver algorithms. The L1 regression and
liblinear solver resulted in the best accuracy of 84%. In order to achieve further improvements,
consideration was given to multicollinearity. As shown in Figure 6, there was a lack of linearly
independent features in the utilized data set.
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Figure 6 Correlation between the RGB and sobel features of the fire and flood images.

Thus, PCA was performed to improve the interpretation of variable contribution within the
model, thus enhancing accuracy. However, implementation of a PCA transformed data set
significantly reduced accuracy to 53%.

Evident in gauged performance metric, the current logistic regression model was not
sufficient in achieving maximized results. Since only the mean values were considered during
feature extraction, it was suspected the current data frame did not contain enough features to
provide the model with a sufficient amount of information to distinguish between different
disaster types. Thus, the methodology approach transitioned to a convolutional neural network as



a way to retain image information while also leveraging the image classification performance of
a CNN.

The initial framework of the model was an 8 layer network consisting of convolution,
maxpooling, flattening, activation, and softmax layers. Several changes were incorporated to the
original CNN model to further improve performance. Modified parameters were based on the
gauged metric of performance during training: accuracy. This was an appropriate metric as there
was a relatively even representation of fire and flood images within the training data set.
Considerations focused on reducing the aspect of overfitting, thus improving model performance
on unseen data. Thus, extensive testing was performed to understand how different dropout rates
and model complexity affected accuracy. This was performed across several 5-fold cross
validation splits. Evident in earlier models, it was clear that validation accuracy would decrease
after a certain amount of epochs. Thus, early stopping was implemented to address the decay in
validation performance. However, there continued to be a clear distinction between training and
validation accuracy. This is shown in Figure 9 where training and validation accuracies are
capped at 94% and 90%, respectively. In order to address these patterns, different dropout rates
ranging from 0.3 to 0.7 were tested. An additional dropout layer after the first convolutional
layer was also implemented. Modifications in dropout rate well as the inclusion of an additional
dropout layer all resulted in significantly lower accuracy values of around 84%.

Additional improvements consisted of fine tuning class weights and model architecture.
Although the representation of both fire and flood disasters was relatively even, it was
recognized there were 1376 more fire images within the 15384 training images. The inclusion of
class weights during training were explored across several different models. Significance
improvements were not observed when gauging accuracy on respective validation sets as
accuracies remained within 90%. Further adjustments consisted of increasing the number of
filters within the convolutional layers of the CNN in ascending order. This was done
intentionally to enhance the model’s ability to capture intricate details within the deeper levels of
the CNN. Improvements in accuracy were not observed. The final model consisted of a single
dropout layer with a dropout rate of 0.5 prior to the output layer. A sigmoid activation is also
implemented in the output layer to accommodate the binary classification task. Additionally,
binary cross entropy was the utilized loss method. The model summary for the CNN used in the
classification of fire and flood images is shown in Figure 7.



Layer (type) Output Shape Param #
conv2d_20 (Conv2D) ( , 36, 36, 32) 896
max_pooling2d_15 (MaxPooling2D) ( , 18, 18, 32) 0
conv2d_21 (Conv2D) ( , 16, 16, 64) 18,496
max_pooling2d_16 (MaxPooling2D) ( , 8, 8, 64) )
conv2d_22 (Conv2D) ( , 6, 6, 120) 69,240
max_pooling2d_17 (MaxPooling2D) | ( , 3, 3, 120) 0
conv2d_23 (Conv2D) ( , 1, 1, 200) 216,200
flatten_5 (Flatten) ( , 200) 0
dense_10 (Dense) ( , 64) 12,864
dropout_6 (Dropout) ( , 64) 0
dense_11 (Dense) ( . 2) 130

Figure 7 Model summary for the final CNN network that classified between fire and
flood disasters.

An obstacle in model training specific to the hurricane damage classification was the
large number of images corresponding to a severity level of 1. This would likely lead to
overfitting on the basis of class imbalance. Undersampling of the majority class was performed,
as this is a common technique to conserve time and computational resources.* Specifically, 2000
random samples corresponding to each disaster severity level were withdrawn from the image
dataset without replacement. After class balancing was implemented, the training and test
datasets were split into 5-fold cross-validation samples. Each cross-validation split was
implemented with a 20% validation to training ratio. For each iteration of the split, both the
multilogistic regression and CNN model were reinitiated and trained.

The multinomial logistic regression model was prepared with grid search
parameterization. Max iterations were capped at 1000 and 10000 epochs. In addition, LBFGS,
Newton conjugate gradient, and stochastic average gradient optimization methods were
parameterized in order to find the model with the best fit. Ridge regression was incorporated into
the model as a regularization method.

The CNN was fitted with resized images of 38 x 38 x 3 dimensions. Additionally, each
image underwent scaling such that all pixels contained values between 0 and 1. Layer
architecture consisted of three convolutional layers increasing from a total of 32 to 128 neurons,
each followed by a max pooling layer. Hidden activation layers incorporated the ReLLU activation
function, while the final output layer consisted of a softmax activation function and four output
neurons, one corresponding to each classification category.



Layer (type) Output Shape Param #

conv2d_21 (Conv2D) (None, 38, 38, 32) 896
max_pooling2d_14 (MaxPoolin (None, 19, 19, 32) e

g20)

conv2d_22 (Conv2D) (None, 17, 17, 64) 18496
max_pooling2d_15 (MaxPoolin (None, 8, 8, 64) 2]

g2D)

conv2d_23 (Conv2D) (None, 6, 6, 128) 73856
flatten_7 (Flatten) (None, 46@8) e
dense_14 (Dense) (None, 128) 589952
dense_15 (Dense) (None, 4) 516

Total params: 683,716
Trainable params: 683,716
Non-trainable params: @

None

Figure 8 Model architecture for the hurricane damage classification CNN

Results
Classification of Fire and Flood Disasters

Training and Validation Accuracy Over Epochs
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Figure 9 Training and validation accuracy for one of the first binary classification models.
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Figure 10 Confusion matrices for the CNN and logistic regression models that predict the

classification of fire and flood images.
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Figure 11 Training and validation accuracy for the final binary classification model.

Hurricane Damage Level Classification

Across each 5-fold cross validation split the average accuracy and f1 score for the
multiclass logistic regression model were 44.5% and 0.441, respectively. The average cross
validation and accuracy and f1 scores for the CNN trained model were higher at 64.3% and
0.640, respectively. It can be seen in Figure 12 that accuracy, precision, and recall generally
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trended upwards over the course of 30 epochs, with the exception of precision for the validation
set. The training loss trended downwards, while the validation loss exhibits a clear minimum
around 16 epochs.
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Figure 12 Loss, accuracy, precision, and recall during CNN training for hurricane damage
classification

Both of the models had the highest number of true positive labels when predicting level 3
damage, as indicated by the confusion matrices in Figure 13. The highest number of
misclassifications occurred for a true label of 2 and predicted label of 1 for the logistic regression
model. For the CNN model, the highest number of misclassifications occurred for a true label of
1 and a predicted label 2.
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Figure 13 Confusion matrix of true and predicted hurricane damage levels for the convolutional
neural network model (left) multinomial logistic regression model (right)

After training, the CNN model was run over 15 epochs on a separate test dataset of
satellite images, yielding an f1 score of 0.546. While this score is lower than the validation sets,

it is well above the score of a random classifier.

Discussion



Implementation of the CNN for the classification of fire and flood disasters resulted in a
test accuracy of 90%. Analysis of performance based on accuracy suggested the CNN model
was the most successful in performing the classification task relative to the logistic regression
model. This is evident through the true positive values along the diagonal of the confusion matrix
shown in Figure 10. Although extensive training was performed with numerous CNN
frameworks and hyperparameters, accuracy remained relatively consistent between the initial
and revised CNN architectures. It was evident in earlier models that overfitting was prominent
with training accuracies significantly out performing validation accuracies. This is shown in
Figure 9. Thus, focus was taken to mitigate the issue of overfitting to the train images. The
training and validation accuracy over several epochs for the final model is shown in Figure 11.
Although the gap between train and validation accuracy was reduced, the point of convergence
did not occur at an appropriate accuracy. Since there are many stakeholders at risk when it comes
to the misclassification of a disaster, it is especially important to develop a computer vision
model that is able to successfully classify unseen data. A successful model in this case would be
a CNN with significantly improved generalization performance. In order to reduce those affected
by an improper classification as well as save resources, further research would need to be
explored in the binary classification of flooding and fire images. Exploration could begin with a
different preparation of data. A more sophisticated method would want to be deployed as a way
to prevent image distortion during the feature engineering process through the incorporation of
minimal padding. Since computer vision tasks rely heavily on large data sets to prevent
overfitting, data augmentation would also be explored. Further modifications in model
architecture would also be implemented in order to find the most optimal framework and set of
hyperparameters.

Similarly to the classification of fire and flood disasters, the CNN greatly improved
accuracy for hurricane damage assessment. In addition, the F1 score was significantly better.
Each metric saw an improvement of approximately 20%. The lower accuracy in logistic
regression classification was likely due to limited feature transformation when training the
model. In the future, it would be beneficial to train a model on more localized pixel by pixel
image features, as opposed to taking mean values across all pixels. For the CNN, the validation
loss clearly exhibits a minimum value, thus it can be beneficial to run the model for lower
epochs: in this case between 15 and 20 epochs, as opposed to 30. This decrease in training
duration led to less overfitting of the CNN on the testing dataset. Future considerations for model
adjustment include tuning the number of neurons per convolutional layer, and increasing layer
depth, provided computational resources are sufficient.

Conclusion

The classification between flood and fire images as well as the multi-class classification
of hurricane images was performed. Both a logistic regression model and CNN were utilized,
with the latter method resulting in the best performance. Performance for the binary
classification was gauged through accuracy, with the final model resulting in 90%. Model



performance for the classification of different damage labels was analysed through F1 values.
An optimal F1 score of 0.54 was achieved. The societal repercussions of building a widespread
computer vision model for the purpose of classification can be vast, possibly impacting millions
of lives in the future. The cost of misclassifying or underestimating the severity of a new or
ongoing disaster could lead to loss of monetary wealth and life. Ethically, it might also be a
challenge to implement such a model, as collecting data for this purpose would involve
widespread property surveillance. Despite these concerns, an accurate, unbiased classifier
potentially provides a net benefit for society, allowing for quicker emergency personnel
response times as well as proper budgeting and dispersal of resources to those affected.
Ultimately, this analysis of satellite images has highlighted the strength of Convolutional Neural
Networks when compared to more traditional regressive models for the purpose of classifying
fires, floods, and hurricanes. With enough computational resources, the setup of CNN
architecture can drastically cut down on implementation time, where minimal initial
preprocessing and data analysis is desired. Furthermore, the ability of CNNs to recognize spatial
patterns within image subregions can lead to increased model accuracy, provided sufficient
training. The next step for future researchers taking a neural network approach to disaster
classification based on satellite images would be to fine tune CNN parameters for a similar
dataset or combine a CNN based model with novel techniques, such as attention mechanisms.
Lastly, there are various other disasters that should be studied with computer vision models such
as tornadoes, tsunamis, blizzards, and earthquakes, as these natural occurrences can often be
equally as devastating.
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